CA-iTLA8600 C Band 89 CH Integrable Tunable Laser Assembly With Dither Function

Technical Specifications Ver 1.01 June, 2018

www.caoptronicsgroup.com

CA-iTLA8600 C Band 89 CH Integrable Tunable Laser Assembly

Description

The CA OPTRONICS GROUP CA-iTLA8600 is a tunable laser assembly compatible with the OIF "Integrable Tunable Laser Assembly" MSA, based on a novel monolithic InP chip that integrates a tunable MG-Y laser with a semiconductor optical amplifier (SOA). The MG-Y (Modulated Grating Y-branch) laser is an electronically tuned device that can address any wavelength in the C-band. Since no mechanical or thermal adjustments are necessary, channel switching is fast with straightforward control circuitry. The SOA facilitates flexible control of the output power and acts as a shutter when reverse biased, enabling dark tuning between channels. The integrated chip has been optimized to improve the power efficiency. The chip is based on advanced InP technology platform, with proven reliability. The devices are packaged into a compact, lowprofile hermetically sealed package, with an internal optical isolator and a wavelength locker. The locker monitors both output power and frequency of the light emitted from the front facet of the chip, enabling a closed loop control that guarantees stability of the frequency and output power over life, to within the requirements of 50 GHz ITU grid spacing applications. The assembly contains all electronics necessary to control the laser, offering users a simple and well-defined digital command interface. The CA-iTLA8600 is provided with polarization maintaining fiber for use with an external modulator.

Features

- □ OIF "Integrable Tunable Laser Assembly" MSA compatible laser and control electronics assembly
- □ Full C-band tuning (89 channels at 50 GHz spacing)
- □ High, flexibly adjustable output power, from 9 to 13 dBm
- \Box Low power dissipation, typically < 3.7 W at 75°C
- \Box High side-mode suppression ratio > 40 dB
- □ Integral wavelength locker, allowing stabilization to within ±2.5 GHz over life, compatible with 50 GHz ITU grid spacing
- \Box Up to ±5 GHz detuning from ITU grid
- \Box Channel to channel tuning time < 0.1 s
- \Box Dark tuning by reverse biasing the integrated amplifier (> 40 dB suppression)
- \Box FM dither for SBS suppression
- □ Transmitter trace tone (TxTRACE)
- □ Polarization maintaining fiber pigtail

Applications

- □ Tunable DWDM transponders and transceivers
- □ Dynamic provisioning and wavelength routing in metro DWDM systems Reconfigurable optical add/drop multiplexers (ROADM)
- □ Optical packet or burst-mode switching Test and measurement
- □ DWDM Transmission system

Specifications

Optical Performance

Parameter	Sym	Conditions	Min	Тур	Max	Unit
Output power	Pmax	All channels, $T_c = -5^{\circ}C \dots 75^{\circ}C$, BOL	13			dBm
Output power variation over life	AP	Locked operation	-0.5		0.5	dB
Output power adjustment range ¹			4			dB
Output power when disabled ²					-35	dBm
Lowest emission frequency	Vmin		191.15	191.70		THz
Highest emission frequency	Vmax			196.10	196.25	THz
Lowest emission wavelength	Amin		1527.6	1528.8		nm
Highest emission wavelength	Amax			1563.9	1568.4	nm
Channel spacing		ITU grid		50		GHz
Number of channels ³		Consecutive channels at 50 GHz spacing within the [vmin vmax] range	89			
Frequency accuracy	Av	Locked operation, EOL	-2.5		2.5	GHz
Frequency detuning		Relative to 50 GHz ITU grid	-5		5	GHz
Frequency tuning time	t⊤			0.03	0.10	s
Side-mode suppression ratio	SMSR		40			dB
Optical signal-to-noise ratio	OSNR	0.1 nm bandwidth	50	55		dB
Linewidth	LW	Phase noise density meas.			5	MHz
Relative intensity noise	RIN	Average over 0.1 – 10 GHz			-140	dB/Hz
Back reflection tolerance					-14	dB
Optical isolation			40			dB
Polarization extinction ratio	PER		20			dB

- 1. Range over which the output power can be adjusted down from the output power Pmax, while maintaining all other optical specifications.
- 2. Output power when the optical output is disabled, e.g. while tuning to another channel.
- 3. Start frequency of the 89 channel range to be specified when ordering.

Electrical and Thermal Performance

Parameter	Sym	Conditions	Min	Тур	Max	Unit
Operating case temperature	Tc		-5		75	°C
Positive supply voltage	Vcc		3.15	3.30	3.45	v
Positive supply current	Icc	Steady state, Tc = 25°C		0.3	0.4	А
	Icc	Steady state, Tc = 75°C			1.2	А
Negative supply voltage	VEE		-5.45	-5.20	-4.95	v
Negative supply current	IEE			<0.01		Α
Total power consumption	Ptot	Steady state, Tc = 75°C		3.7	4.2	w
Input signal pin voltage, low	VIL		0.0		0.8	v
Input signal pin voltage, high	VIH		2.0		3.45	V
Output signal pin voltage, low	Vol	IoL = 4 mA	0.0		0.6	V
Output signal pin voltage, high	Vон	Iон = -4 mA	2.4		Vcc	V
Power supply noise		100 Hz to 20 MHz			1.0	% rms

Dither

AM dither for transmitter trace tone purposes can be generated by applying an analog signal to pin 14 of the ITLA module, within the limits defined below. A triangular FM dither, typically used to suppress stimulated Brillouin scattering (SBS), is generated internally within the ITLA module when the Dither register is set to 0x0012.

Parameter	Sym	Conditions	Min	Тур	Max	Unit
AM dither input impedance					10	pF
An alther input impedance			10			kΩ
AM dither amplitude	А	Sinusoidal, peak to peak, relative to average output power			10	%
AM dither input voltage	Vam	Sinusoidal, peak to peak			2.5	V
AM dither gain				4		%/V
AM dither frequency range	fам		10		3000	kHz
FM dither amplitude	F	Triangular, peak to peak	0.1		1.0	GHz
FM dither frequency range	fгм		10		50	kHz

Fiber Connection

Parameter	Comments	Min	Тур	Max	Unit
Fiber type	Polarization maintaining single-mode fiber ¹				
Fiber length		0.9	1.0	1.1	m
Mode field diameter		9.5	10.5	11.5	μm
Fiber cladding diameter		122	125	128	μm
Fiber polymer coating diameter		380	400	420	μm
Fiber outer jacket diameter	Loose tube		900		μm
Polarization orientation	Parallel to slow axis of PM fiber				
Fiber bend radius		20			mm
Fiber proof strongth		200			kpsi
riber proor scrength		1.38			GPa

1. Fujikura SM15-PS-U40A-H PANDA or equivalent.

Absolute Maximum Rating

Parameter	Sym	Conditions	Min	Max	Unit
Storage temperature range			-40	85	°C
Signal pin voltage			-0.3	3.6	V
+3.3 V supply pin voltage	Vcc		-0.3	3.6	V
-5.2 V supply pin voltage	VEE		-5.7	0.5	V

Mechanical Package

For ITLA with PN: CA-iTLA8600 Dimensions are in millimeters. General tolerances are ± 0.13 mm. Mounting holes are M2 tapped holes

Pin Assignment

Pin #	Function	Pin #	Function
1	Vcc = +3.3 V	2	DIS*
3	Vcc = +3.3 V	4	SRQ*
5	GND	6	MS*
7	GND	8	TxD
9	Vee = -5.2 V	10	RxD
11	Vee = -5.2 V	12	RST*
13	OIF reserved	14	AM dither (TxTRACE)

Pin Functions

Pin	Symbol	Туре	Name	Description
Functions Pin Numbers				
5,7	GND	Power	Ground	Ground
				Note: Ground pins are tied together internally to the module.
1,3	PS+3.3V	Power	+3.3V Supply	3.3V Power Supply
				Note: Pins are tied together internally to the module.
9,11	PS-5.2V	Power	-5.2V Supply	-5.2V Power Supply
			,	Note: Pins are tied together internally to the module.

12	RST*	LVTTL input, active low	Reset	Purpose: Disables laser output and holds the module in RESET Initial State: Any – user application specific Action: Laser OFF, TEC OFF, Module CPU held in RESET, Communication protocol is OFF Resultant State: High, Must remain high for laser to operate Attributes: When active, lowest current draw from the module
2	DIS*	LVTTL input, active low	Disable module's optical output	Purpose: Provide hardware control to kill laser output. Initial State: Any – user application specific Action: High = laser output controlled by protocol; Low = laser output OFF Resultant State: When DIS* asserted, communication protocol is ON, software enable (SENA) reset. Attributes: Bypasses communication protocol to turn laser OFF. Re-enabling of the laser requires setting SENA. Otherwise does not interfere with module settings
4	SRQ*	LVTTL output, active low	Programmable module service request	Purpose: General purpose service request. Initial State: High (No service requested) Action: Generates request for service as required to report a variety of conditions by setting line low. SRQ* is asserted when the result of the status (0x20,0x21) OR'd with SRQT trigger (0x28) is non-zero. Resultant State: •Communication protocol is ON •SRQ* conditions can be read and cleared through interface Attributes: SRQ conditions (and limits) are software configurable and can be re- configured by the user through the interface. Status bits must be cleared to de-assert SRQ*.
6	MS*	LVTTL input, active low- high transition	Module IO Select (Reset communicatio ns interface)	Purpose: Provide hardware control to reset physical interface Initial State: Any – user application specific Action:High or LOW = No effect; Low to High transition – Reset communications interface, clear input buffers, terminate current packet Resultant State: Communication can be commenced upon deassertion with a new packet. Attributes: Provides ability to reset communications interface
8	TxD	LVTTL output	Module's Transmit Data	Purpose: Transmit outbound packets from module
10	RxD	LVTTL input	Module's Receive Data	Purpose: Receive inbound packets from host
13	OIF Reserved	LVTTL input	OIF Reserved	No user connection Purpose: Provide for possible future expansion of communications interfaces
14	AM dither	2.5V p-p sinusoidal, analog inpu	Dither amplitude analog signal	Purpose: Provide trace tone capability. AC coupled inside ITLA. Pull down to ground if not used.

Operate:

- 1. According to the above pin definition to connect the hardware, which includes VCC, GND, TXD (TTL), RXD (TTL), and other signals.
- 2. According to OIF-ITLA-MSA-01.2 Standard protocols and validation method, Through the UART to control the ITLA module, the details please reference OIF-ITLA-MSA-01.2standard protocols

Order Information

PN: CA-iTLA8600 Description: Tunable laser assembly, 89 channels at 50 GHz spacing from 191.70 THz to 196.10 THz, 13 dBm output power, 900um loose tube single mode fiber pigtail with FC test plug

United States: CA OPTRONICS GROUP INC.

3652 Edison Way Fremont, CA 94538 USA Tel: 1-510-366-7353 Fax: 1-510-795-1795

<u>www.caoptronicsgroup.com</u> Product specifications and descriptions in this documentation subject to change without notice. Copyright @ 2008 CA OPTRONICS GROUP INC. Jule., 2018

61000109 V1.01

Product specifications and descriptions in this documentation subject to change without notice.

Copyright @ 2008-2018 CA OPTRONICS GROUP INC.